B.Sc. (With Credits)-Regular-Semester 2012 Sem III B.Sc.23121 - Physics Paper - I (Thermodynamics And Acoustics)

P. P Tim	ages : ne : Thr	3 ree H	ours * 4 2 8 7 *	GUG/W/16/3348 Max. Marks : 50				
	Note	s :	 All questions are compulsory. Draw neat labelled diagrams wherever necessary. 					
1.		Eit	ner:					
	a)	i)	What is a heat engine? Define the efficiency of a heat en	gine? 2				
		ii)	Describe carnot's cycle and obtain an expression for the engine working between two temperatures T_1 and T_2 .	efficiency of an ideal heat 5				
		iii)	A 100 kW engine is operating between 217°C and 17°C. Calculate	3				
			a) the amount of heat absorbed.					
			b) the amount of heat rejected.					
			c) the efficiency of the engine.					
	OR							
	b)	i)	Define Entropy. Discuss its physical meaning.	2				
		ii)	Show that the entropy of the universe remains constant i it increases in a irreversible process.	n a reversible process while 5				
		iii)	Calculate the change in entropy when 10 grams of ice at at 100°C. (Given : Latent heat of ice = 80 cal/gram) Latent heat of steam = 540 cal/gram	0°C is converted into stream 3				
2.		Eit	ner:					
	a)	i)	State and prove plank's radiation law for black body radi	ation. 5				
		ii)	Obtain the Wien's displacement law from Planck's law.	2				
		iii)	Calculate the surface temperature of the sun and moon, g 14×10^{-4} cm respectively, λ_m being wavelength of maxim (Given Wien's constant = 0.2898).	given : $\lambda_m = 4753 A^\circ$ and 3 num intensity of emission				
	OR							
	b)	i)	Explain the term Reverberation.	2				
		ii)	Obtain the Sabine's formula for reverberation time and e	xplain its significance. 5				

	iii) A broadcasting studio measuring 25x12x7 metres has a reverberation time of 0.90 sec when empty. What will be the reverberation time when an audience of 250 persons is present?	3			
	(Given : absorption coefficient of a person = 0.4) average absorbing area of each person = 0.6 m^2				
	Either :				
a)	Show that the slope of an adiabatic is γ times the slope of the isothermal where γ is the ratio of the two specific heat capacities.				
b)	What do you mean by thermodynamical scale of temperature?				
c)	State and explain Rayleigh-Jean's law and its failures.	21/2			
d)	Explain the mechanism of hearing.	21/2			
	OR				
e)	 A certain mass of an ideal gas at 27°C and at pressure 8 atm. is expanded suddenly to four times its volume. Find a) Final pressure. b) Final temperature. Given γ = 1.5. 	21/2			
f)	Derive Clausius – Clapeyron's equation.	21/2			
g)	What is black body radiation? Explain its temperature dependence.	2¹/ ₂			
h)	Discuss the requirements of a good auditorium.	21/2			
	Either :				
a)	Explain the concepts of reversible and irreversible processes.	21/2			
b)	Explain the significance of the term 'Heat Death' of the universe.	21/2			
c)	A body at 1500 K emits maximum energy of wavelength 20,000 A°. If the sun emits maximum energy of wavelength 6666 A°, what would be the temperature of the sun.	21/2			
d)	What is a microphone? Explain any one type of microphone.	21/2			
	OR				
e)	Give applications of the first law of thermodynamics to (a) isobaric (b) adiabatic.	2¹/ ₂			
f)	Calculate the change in boiling point of water when the pressure of steam on its surface is increased by 1 atmosphere. Given, boiling point of water = 373° K specific volume of steam = $1.671 \text{ m}^3 \text{kg}^{-1}$ and Latent heat of steam = $2.268 \times 10^6 \text{ Jkg}^{-1}$	21/2			

 $1 \text{ atm} = 1.013 \times 10^5 \text{ N/m}^2.$

3.

4.

	g)	State the Plank's quantum postulates about black body radiations. What are the factors affecting the acoustics of a Hall? Explain them.			
	h)				
5.		Solve any ten of the followings.			
		a)	Define intensive and extensive variables.	1	
		b)	State carnot's theorem.	1	
		c)	State the first law of thermodynamics.	1	
		d)	Show that change in entropy in adiabatic process is zero.	1	
		e)	State any one Maxwell's thermodynamic relations.	1	
		f)	What is T-S diagram?	1	
		g)	What is emissive power of black body?	1	
		h)	Define the term, absorptive power.	1	
		i)	What is the wavelength at which human body radiates maximum energy? Temperature of the human body is 37°C, Wien's constant (b) = 2.898×10^{-3} mk.	1	
		j)	Define term Noise and Music.	1	
		k)	What are transducers?	1	
		1)	Calculate the change in intensity level when the intensity of sound increases by 10^6 times its original intensity.	1	
