B.Sc. (With Credits)-Regular-Semester 2012 Sem I **1S-PHY 101 - Physics Paper - I (Mechanics and Oscillations)**

P. Pages : 3 Time : Three Hours			Hours $\star 4621 \star$	GUG/W/16/3321 Max. Marks : 50						
	Not	es :	 All questions are compulsory. Draw neat labelled diagram wherever necessary. 							
1.		Eit	ther :							
	a)	i)	What is meant by frame of reference? Distinguish between inertial and non-inertial frame of reference. Give one example of each.							
		ii)	A reference frame rotating with respect to another frame with an an Find the relation for acceleration.	gular velocity \overrightarrow{w} . 4						
		iii)	The position vector of a body is given by $\vec{r} = (8t^2 - 4t)\hat{i} + t^2\hat{j} + 9t\hat{k}$ velocity and acceleration of a body at $t = 4$ sec.	. Find the 3						
			OR							
	b)	i)	State and explain Newton's law of gravitation. Give S.I unit of G.	2						
		ii)	What is gravitational potential? Derive an expression for gravitation to a spherical shell at a point out side the spherical shell.	al potential due 5						
		iii)	 Calculate the gravitational potential of a thin spherical shell of mass 12 cm at a point a) 20 cm 	15 kg and radius 3						
			b) 12 cm away from it's centre. $(G = 6.673 \times 10^{-11} \text{ Nm}^2 / \text{kg}^2)$							
2.	Either :									
	a)	i)	What are Lissajou's figures? State any two applications of it.	2						
		ii)	A particle is subjected simultaneous to two SHMS at different ampl frequency acting right angle to each other. Find the general expressi resultant motion.	itude and same 5 on for the						
		iii)	Obtain the expression for the resultant motion for the phase different a) 0° b) $\pi/4$ c) $\pi/2$.	ice 3						
		OR								
	b)	i)	Explain damped and forced oscillations.	2						
		ii)	Establish the differential equation of damped harmonic oscillator an general solution.	d obtain it's 6						

	iii) A mass of 25×10^{-3} kg is suspended from the lower end of a vertical spring having a force constant 25 N/m. What should be the mechanical resistance of the system so that the motion of the mass is critically damped.	2
	Either :	
a)	What are central and non-central forces? Give characteristics of each.	21/2
b)	Two bodies of masses 2g and 10g have position vectors $(3\hat{i} + 2\hat{j} + \hat{k})$ and $(\hat{i} - \hat{j} + 3\hat{k})$ respectively. Find the position vector and the distance of centre of mass from the origin.	
c)	Discuss the necessary conditions for the interference of sound waves.	21/2
d)	Define quality factor of a harmonic oscillator and find the equation of quality factor of a damped harmonic oscillator.	21/2
	OR	
e)	State and explain Kepler's laws of planetary motion.	21/2
f)	Show that velocity of centre of mass of a system remains constant in the absence of external forces.	21/2
g)	Define moment of inertia and radius of gyration. Give it's unit and dimension.	21/2
h)	Calculate the resonance frequency of an acoustic system having $Q = 1.75$ and the half power frequency are 200 Hz and 360 Hz respectively.	21/2
	Either :	
a)	State Newton's laws of motion and discuss their limitations.	21/2
b)	Explain the terms.	21/2
	i) Angular momentum.	
	ii) Torque of a rigid body.	
c)	A body of mass 0.1 kg is rotating about an axis. If the centre of mass of body is at a distance 0.5 m from the axis of rotation. Calculate its moment of inertia. Also calculate the M.I of circular disc of mass 2 kg and radius 0.17 m.	21/2
d)	Derive the equation of power dissipation in damped harmonic oscillations.	21/2
	OR	
e)	A particle is moving along a curve in a plane. Derive an expression for radial and transverse component of velocity.	21/2
f)	Prove that $\frac{dJ}{dt} = \tilde{\uparrow}$	21/2

GUG/W/16/3321

3.

4.

g)	Derive the differential equation of linear SHMs.				
h)	Exp i)	lain the terms. Quality factor and band width.	21/2		
5.	Attempt any ten of the followings.				
	a)	Define centripetal force.	1		
	b)	State the difference between conservative and non-conservative force.	1		
	c)	Newton's first law of motion simply a special case of Newton's second law. Explain.	1		
	d)	Define centre of mass.	1		
	e)	State the principle of conservation of linear momentum.	1		
	f)	Define gravitational self-energy of a body.	1		
	g)	State the theorem of parallel axes for the moment of inertia.	1		
	h)	What is beats?	1		
	i)	State conservation of angular momentum.	1		
	j)	What is meant by dead beat motion?	1		
	k)	State differential equation for forced harmonic oscillations.	1		
	l)	What is meant by sharpness of resonance?	1		
