# B.Sc. III (with Credits)-Regular-Semester 2012 Sem VI

# B.Sc.4530 - Mathematics Paper-IV Analysis

P. Pages: 2
Time: Three Hours

GUG/W/16/5647

Max. Marks: 60

\_\_\_\_\_\_

Notes: 1. Solve all the **five** questions.

- 2. Question 1 to 4 has an alternative. Solve each question in full or its alternative in full.
- 3. All questions carry equal marks.

### UNIT - I

1. a) Show that  $d(x, y) = |x - y|, \forall x, y \in R$  defines a metric on R.

6

b) Prove that every neighbourhood is an open set.

6

#### OR

Prove that  $\{S_n\}$  is a Cauchy sequence of real numbers if and only if  $\{S_n\}$  is convergent in R i.e. R is a complete metric space.

6

d) Prove that compact subsets of a metric space are closed.

6

# **UNIT-II**

2. a) Let f, g be bounded functions defined on [a, b] and p be any partition of [a, b]. Then prove that  $U(P, F+g) \le U(P, F) + U(p, g)$  and  $L(P, F+g) \ge L(P, F) + L(P, g)$ .

6

6

b) If f is bounded and integrable function over [a, b] and M, m are the bounds of f over [a, b] then prove that  $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$ 

ΛR

c) If f is monotonic in [a, b] then prove that it is integrable on [a, b].

6

6

If  $f \in R[a, b]$  then prove that  $F:[a, b] \to R$  defined by  $F(x) = \int_a^x f(t) dt$  is continuous on [a, b]. If f is continuous at  $x_0 \in [a, b]$  then also prove that F is differentiable at  $x_0$  with  $F'(x_0) = f(x_0)$  and if f is continuous on [a, b]. Then F is differentiable on [a, b] with  $F'(x) = f(x) \ \forall \ x \in [a, b]$ .

# **UNIT - III**

**3.** a) Prove that

6

i) 
$$\int_{c} \frac{dz}{z-a} = 2\pi i$$

ii)  $\int\limits_{c}\left(z-a\right)^{n}dz=0, \ n \ , \ \text{any integer} \ \neq -1 \ \text{ where } c \ \text{is the circle} \ |z-a|=r \, .$ 

b) If a function f(z) is analytic in a simply connected domain D, then prove that  $\int_{c} f(z)dz = 0$  for every simple closed curve C in D.

OR

- Evaluate  $\int_{c} \frac{15z+9}{z(z^2-9)} dz$ , where c is the circle |z-1|=3.
- Evaluate  $\int_c \frac{z-3}{z^2+2z+5} dz$ , where c is the circle |z+1+i|=2 by using Cauchy residue theorem.

**UNIT - IV** 

- **4.** a) Find the finite Fourier sine and cosine transforms of  $f(x) = \sin ax$  in the interval  $(0, \pi)$ .
  - b) Find the finite sine and cosine transform of mx,  $0 < x < \ell$ .

OR

- Show that the Fourier transform of  $f(x)e^{-ax^2}$  is  $\sqrt{\pi/a} e^{-\lambda^2/4a}$ .
- Show that Fourier cosine transform of  $f(x) = e^{-x^2}$  is  $\frac{1}{\sqrt{2}}e^{-\lambda^2/4}$

5. Attempt any six.

- a) Define complete metric space.
- b) Define open and closed sphere.
- c) Prove that  $M(b-a) \le L(p, f) \le U(p, f) \le M(b-a)$  where M and m denote the sup and in f of f(x) in I = [a, b].
- d) Prove that inequalities  $\int_{0}^{1} e^{x^2} dx > 0$
- e) Evaluate  $\int_{c} \overline{z} dz$ , where c is the unit circle |z| = 1.
- f) Show that  $\int_{c} dz$  and  $\int_{c} z dz$  vanish on the smooth closed contour c.
- g) Define finite Fourier cosine transform.
- h) State convolution theorem for Fourier transform.

\*\*\*\*\*\*